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STABILITY OF ELASTICALLY SUPPORTED COLUMNS

By Alfred S. Niles and Steven J. Vigcovich
SUMMARY

A criterion is developed for the stlffness required
of elastic lateral supports at the ends of a compression
member to provide stability. A method based on thls ecri-
terion ig then developed for checking the stabllity of a
continuous beam-column. 4 related method is also devel-
oped for checking the stability of a member of a pin-
jointed truss against rotation in the plane of the truss.

INTRODUCTION

One important task in airplane structural design is
the investigation of the elastic stablility of a contln-
uous member subjected to axial compression and provided
with elastic support against lateral buckling. 4 typleal

member of this class is a longitudinal fuselage stiffensr N

with the transverse fuselage rings acting as the elastic
transverse supports. If the supports are assumed 1lnfil-
nitely rigid, and they are not too numerous, the critiecal
load can be determined by the methods of reference 1

(art. 14:6). When, however, as in actual structures, the
supports are not infinitely rigid, the criticel load for

the continuous member is reduced, but the problem of de-
termining its magnitude becomes much more complex. Prac-

tical solutions of the problem have been obtalned for a _
few simple-cases like those investigated by Xlemperer and

Gibbons (reference 2) and by Schwartz and Bogert (refer-’

ence 3), but no satisfactory procedure has been developed
for determining the critical loading for a continuous

beam~column with elastic supports of arbitrary numbor, lo-
cation, and stiffnesscs. Convorsely no satisfactory pro-—

cedure has boen doveloped to detcrmine the stiffnesses re-
quircd of arbitrarily located supports to ensure that the

critical load of the supportecd member will exceed some de-

sired minimum value.

e
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Schwarz has shown (reference. 3) that, with a single
elastic support, if-ihe stiffness of the support is Dbut
slightly in excess of that required for, stability and.
there 1> initial deflection of the support point or play
1n the connectlion, the supported member 1s likely %o de-
flect excessively and to faill plastically. It appears
reasonable to assume that thig condition weuld be just as
likely to be present with more than one eldstic suppPortb,
and in practice the stiffnesses of such supports should be
considerably in excess of the theoretical minimum require~
ments. From the practical point of view, therefore, it is
.not 'essentisl that the criterion for support stiffness 1n-
dicate the theoretical minimum allowabdle values. The for-
muelation of ;a criterion indicating stiffnesses definitely
on. the safe slde would Ffurnish the designor with an appro-
ciated tool of wmnmlysis, provided that it did not prove
excesslvely and needledsly conservative. The chiof pur-
pose of this paper is to. show how such a criterion can De
developod and applied, if the agctually continuous bean-
column is treatcd as a serics of rigld links mutually
pin-connoctod at the locaticns of latoral supportb.

. Tho chicf" apparont-ﬂefect of the critarion developod
on this basis :Is :that the stiffnosses attrlbuted to the.
supporting mombérs aré effoctivo stiffnqssos that arxe in-
fluenced by the .rigidity of whatevor i, prOVLiod to sup-
port thosc supporting mombors. TFurther invoatigation is
thoreforo rogquirocd to Improvo its practicability. Tho
probleom appoars capablo of solution and it ‘is oxpocted‘
that the basiec procodure outlinod in thie paper can bo
adapted to the solution of various important practical-
probloms. Thé' only eoxtension that has booen carricd out
" thus far is that of developing the procedure described in
this paper for checking the stability of a pin-ended truss
member agalnst rotatlon in the plane of the truss. Steps
ere being taken to o¢btain an experimental validation of
this .extension, but progress along this line 1s as yet in-
sufficieént to Justify a report.

STABILITY OF LINKS ETASTICALLY SUPPORTED AT ONE END
AND RIGIDLY SUPPORTED AT THE OTHER
The simplesﬁ type of elastically supported member is

that represented by the link AB, gshown in figure 1, which
ig completely restrained from both horizontal and vertical
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movement, though free to rotate, at its left end A and
resbrained from vertical movement at 1ts right end B by
the spring BC, This link is obviously in squilidbrium

when in the indicated horizontal position, regardless of

the magnitude of the gxial compression P. Whether that
equilibrium is stable, neutral, or unstable depends on

what would happen 1f the link were glightly displaced, and
this condition would depend on the magnitude of the axial
compression. If the system remained in equilibrium in B
spite of the displacement, it would be 1ln neutral equilib- )
rium, The magnitude of P associated with this condi- .
tion 1s celled the critical load and may be designated -
Pope If, however, P < P.r» the displacemont would do-

velop forces tendlng to restore the orlginal condltions,
and the equilibrium would be stable. On the other hand,
if P > P,p, the forces developed by the displacement
would %tend to cause increased diesplacement and the equi-
librium would be unstable. The practical problem is
therefore to determine the critical load, and that load
may be defined as the load under which the system would Dse
in equilibrium in spite of a very small chaenge in the po-
sitlon of AB.

For any practical structure there will be a ceritical
load assoclated with each geometrically possible type of
change in shape, but attention will be limitsd to that as-,
sociated with rotation of the link AB 1in the vertileal
plane. This critical load can be most readily determined
by the mothod described by Timoshenko in roference 4, bascd
on the proposition that when P = P,. no change in the
potential energy of a system would result froam a small
change 1n 1ts configuration. Since that mothod is to be
extended to investizations of more conplex systems, it is
desirable to review 1t at this polnt.

If the link AB were to rotate in the vertical planse,
there would be no movonent of A, on account of the rigid
support assumed at that point. End B, however, would
mave both vertically and horizontally. If the angle of
rotation o 18 assumed small, it is permissible to assune
sin « = a and cos o = 1 - o®/2. Then &, the vertical
nmovenent of B, will be oqual to L o, and Y, +the hori-
zontal movement of that point, will De - o —

2 -

Y = 8
2 L .
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Therefore, one result of the rotation of 1link AB
would be to cause the axial load. P to move through the
distance Y and do the work ) ' :

) _p.oy P 8% . .
u Ug = P Y = . (2)
If the 1ink .AB  gnd the support at O Dbe assumed rigid,
equation (2) is also a measure of the strain energy that
must be stored in the spring BC for the .net change of po-
tentlal energy bof the system to be zero. An alternative
measure of the straln ensrgy of the sprlng is provided by
XK, +the spring constant of tHat member and the magnitude
of its change in lerngth. The last- mentioned quantity 1is
identical with 6, - the vertical movewent of B, so0 the
strain energy of the spring may also be_writgen; -
U; = §§ﬁ? o S (3)

The equating of these alternative. measures of the strain
energy of the spring and the simplifying of them gives
:Pcr =KL T (4)

as the relation that must be satisiied if tha link 1is- to
be in noutral eouillbrium. N .

In the provious discu531on it is assumed that the link
4B is rigid, but equation (4) would still be obtained as
the criterion for noeutral cequilidbrium with respect to rota~
tion in the vertlcal plano even though tho change in length,
AL = PL/AE whore A ig the cross—soctlional arca and 3 1is
the modulus of olastlclty, werc taken into account. If 1%
should happcn that . P,on . as obtained from cquation (4) wore
groater than the Euler load, P, = 2EI/L?, actual failure

would- take placc by buckling unaccompanicd by rotation of
the link as soon as. the axial load P Tbocamo oqual to Pg,.
If, howevor, P,,. < Py, fallure would be by rotation undor

the former load.

In dosign the problem is ofton to dotorminc the stiff-

ness requircd for stable oquilibrium when the axlal loqd is_;

of a especified magnitude P, loss than P,, rathor than to
detormine tho critical load Py, associated with a spring
of known stiffness. The value of K associated with neutral
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stability under a given load P may be called the eritical
spring congtant for that load and be designated Kop.

Then by rearrangement of equation (4) the eritical spring
constant for the gystem of figure 1 is obviously

Ker = P/T A (5)

Thoe critical spring constant for the two-link systom
of figuroc 2 can be obtained in the same manner as that for
a single link. As the result of small. gimultaneocus rota-
tlons of the fwo links, point C would move horizontally
through the distance ° ' ’ -

2 2
v _+8 (6)

and the force P would do work egual to

2 _
2 1 L

while the strain energy of the spring would agaln be re?-
resented by equation (3). The equating of equations (3

.and (?) gives for the critical spring constant

fer = ? (g2 +il’a'> o @

From inspection of equation (8) it can be seen that
the stiffness required of a single spring to mainbain sta-—
bility of the two-link system is the sum of the stiffness-
es that would be required of the springs in the two single-
link systems into which it might be resolved. In other
words, the single spring at B might he assumed to be
composed of a pair of associated springs wlth the same to-

tal stiffness, one of these partial springs being assignsd =

%o act with each of the links, and sach link being inves-
tigated separately as though it were part of a system like
that shown 3a figure 1. Thus, if the axial load P were
specified, the oritical spring constants for links 4B :
and BC would be computed separately and then added to de-
termine the minimum allowable spring constant for a single
spring located at B,
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CRITERION FOR THE STABILITY OF A LINK -

ON TWO ELASTIC SUPPOﬁTS-

In the preceding seotion it is assumsd that one end
of each link 1g rigldly supported against translation
normal to the axial-load, but.-in practice it 1s more likely
that the restralnt against such movement will be elastic
in character. In order to extend the method.of attack
‘Poreshadowed in that seetion; it is therefore necessary to
develop a criterion for the stability of a link elastical~-
ly supported at both ends, such as the link AB shown in
figure 3. ;

In this system wﬂen the link AB rotates about any
point along its length the work done by the exial forces
P is

2
Uy = ng (8, + 8g) (9)

The resulting strain energy of the springs is

K 6'2 K.5 2
Uy = 203 4 ZR%2 . (10)
. 2 2

where K, and Xz are the spring constants of the slastle
supports at A4 and B, respectively., When the right-hand
sides of equations (9) and (10) are equated

P ' o K181 Kaae

S + = + 11
2.L'(61 62) p > (11)

From the geomebry of figure 3

o

: gg 5.2 =n and 8z = 1n 8§, ) (12)

'Also, since equatlon (11) implies that the link, though ro-
tated slightly., remains in equilibrium, K:8; = X 83 =
n K;86,. Therefore

n = Ki/Kg (13)

<
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Substitution of equations (12) and (13) in equation (11)
produces - _ ——

e————

P _
T (1 + n)® 6,° = n XKz5,° + n®K_5,° (14)

which simplifies to

P = ———n KEL (15)
l +n

Again, the substitution of equation (13) in equation (15)
and the simplifying of the equation obtained results in
K.X_L
Pop = i e . —(18)
K, + K,

Equation (16) expresses the criterion for the criti-
cal load of a link supported at both ends, the supports
being of either equal or of unequal stiffness, If they
happen to be. of equal stiffnesses, X, = Kz and the cqua-
tion roduces to

Por = KL/2 (17)
If one of the supports is rigid, its spring constanf-igi
infinite and equation (16) reduces, as would bo expeétsd,
to equation (4). This result can be proved by the divi-
sion of tho numerator and the denominator of the right-
hand side by K,, which gives

Pop = —22__ o (18)
1+ =2

which ‘becomes Pgyyp = Kz when K; is equal to infinity.

It is of interest to visuallzo the effect on the crit-
ical load rosulting from lncreasing the stiffness of ons
of the supports. Let P; he the criticael load whon

n =X,/K; =1. As the ratioc n increases, Pyp increases
until it becomes cqual to 2 P, when n 1s infinilte.

This result can be seen from comparison of equations (4)
and (17). The character of this variation of Pgp with

n 1is shown graphically in figure 4.
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"If 1% is desired to f£ind the minimum gllowable gtiff.
ness for the support at B when the gtiffness of the sup~
port at A and the axial load P are given, this calcu-
~latlon can be made by solving equation (16) for X,. The
resuld is

K.P - - T
R A (19)

STABILITY OF TWO LINKS ON THREE ELASTIC SUPPORTS

The same method can be extended to obtain a criterion
for the stabllity of the structure indicated in figure 5
whero two pin-connected links are subjocted to the -axial
londs Py &and P; and are restrained against rotation by
elastlc supports at A, B, and C. Rotation of the links
would be associated with relative horizontal movements of
A, B, and C &and tho forces P, =and Pz would do work

equal %to

U, = 8§, + + 2 (5. + 65.)° 0

At the same time the .supports would store straln cnorgy
cqual to : . : : o
K.8.°2 K82 K.5.° . _
Ui = 1v1 + =292 + 393 (21)
2 2 .. 2 .

For the systom to be in noutral equilibrium, it is noces-
sary that Ug = Ui, or that

P 2 P 2  K.8,® X_8,° K. ®
3 2 103 2%z 3°3
— + + — =. +
ot (5,+85) - 5T, (65+8;) = 5 + 25 (22)
Lot
8 g b Y [s] .

Bquation (22) thon reducts to.. . L

. 2 . : 3 R - = .
Pils (m+l) 4 PzL, (n+l) = (Kim +XK,+K n ) Lila  (24)

.-
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In order %o satisfy the requirements of egquilibrium

K161 + K383 = Kgsa _(25)

The combining of oquations (23) and (25) and the eimplify-
ing of the result will give

Kim + Kzn = K3 (26)

Lot the total stiffness K, of the support at B Dbe
rosolved into two portions, p Kz = m XK; and q Kz = n K;,
whore p 4+ g = 1. Thon e

p Ka/K,y m o+ 1 (pKs + K3) /K, (27a)

m

n =q Kg/Kg n+ 1= (gKz + K;) /K, - (27p)

By substitution of the relations of egquations (27) in equa-
tion (24) '

2 3 2 2
P,L, (pKy + K;)7/K," + P_L, (qK; + K3) [K;
= (pKz?/K; + Kz + ¢®Kp°/K,) LI - . . (28)
If P; = r P, this oquation reduces to

KleLlLa_[pKaKs(Kl + pKy) + qK K (K, + qk5) ]
1= 2 z P
K 2L, (pK, + K,)° + rK,°L,(qKs; + Kj)

(29)

If X, 1is rosolved into 1ts components pK; and
gKs, thoe criterion for tho critical value of P; Dbecomes

KK, LDy [pKpXz(K; + pKz) + qK Ka(K; + akz)]

P, = (30}

K,”L;(pKs + XK3)° + rK,°L; (qKs + K5)°

Tho same procedure could be used to determine the
critieal loading for any number of links, but even for Iwo
links the expression for the critical loading becomes to00
unwicldy for practical use,” In the development of that
expression 1t may be noted that tho stiffness of the cen~
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tral support K; ig divided into two portipns}‘ This divi- .

sion is equivalent to assuming that the "support is composed
of two springs; (one attached to the link AB, and the
other, to the link BC) in effect changing the system under
conslderation from that shown in figure 5 to. that of figure
6, 1f the short link shown at B 1is assumed %to be of -zero
length, In the system of figure 6, 1f sach link is treated
independently, snd if .P1 is t0 be the critical load for
span AB, and P,;, the critical load for span BC, from
equation (19) _ T

K. p K P,
1”1 3" =2 ;

pg = —mr v . gKg = ——— (31)
KlLl - Pl K3L3 - PS‘

Substitution of equations (3l) in equation (30) leads to
an identity. This result means that if equations (31) are
satisfled, equation (30) is also satisfied, and, so far

ng stabllity against rotation of the links is concerned,
the systems of figurces 5 and 6 are esquivalent,

THE SUCCESSIVE LINK METHOD OF INVESTIGATING STABILITY

In the investigation of the stabllity of a series of
pin-connected links the most common problem is to deter-
mine whether the system 1ls stable when the axial loads in
the links and the spring constants of the elastic sup-
ports have specified values. This problem can readily dbse
solved if each elastic support at the Jjunction of two
links 18 assumed to be composed of two supports, one at-
tached to sach of the links, between which the stiffness
of the actual single support is partitioned. This set-up
1s illustrated by the analysis of the system shown in
ftgure 7, in which five links arec assumed rigidly sup-
ported against translation at the ends of the chain and
elastically supportod at the intormediate Jjolnts. For
simplicity it is asbumod thet P, = P; = P, = F =Py =P

and . Ly = Ly = Ly = Ly = Lg =L, . It is also assumed that

P < wPEI/L®, -so there will.be no "Euler buckling" of the
.individual links betweeon supports.

Beginning .at tho.left support, from equation (5) the
minimum gllowabloc stiffnose of the support at Joint 1 1ise
P/L, or ' ' o -
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1.0 = = 10 pounds per inch (32)

Therefore, if K; 1is less than 10 pounds per inch, the
system is obviously unstable; but if K; exceeds that

~value, there will be surplus stiffness that can be util-

ized to restrain rotation of link 1-2. If K, = 20
pounds per inch, this surplus is K;_z = 20 - 10 = 10
pounds per inch, which is the value of Ky %o be used in
the investigation of the second link. For that purpose
equation (19) may be written . : o

AP

K P - _

Ko = l=3 . (33) _
8- "X, ;L - P : .
or
10 x_ 1000

= o
10 X 100 ~ 1000 . —

In other words, if KX; 1is only 20 pounds per inch, the
support at station 2 must be rigid. If that support is to
be elastic, X, must have a spring constant greater than
20 pounds per inch. If K; = 40 pounds per inch, K; 5 =
30 pounds per inch, and from equation (33) the requirsd

‘value of Kg_, 1is L ] —

Kaor = 80 _x 1000 = 15 pounds per inch .

30 X 100 - 1000

If it is assumed that Kz = Kz = Kg = 40 poundé per
inch, the computations are as follows:

Ks_s aveilable = 40 - 15 = 25 pounds per inch
25X1000
25%x100-1000

- X __réquiqéd = = 16.67 pounds per inch

K, , available = 40 - 16,67 = 23.33 pounds per linch
K45 required = 23,300/1,333 =-.17.50 pounds per inch
K,_, available = 40 - 17.50 = 22.50 pounds per inch

XK,_, required = 22,500/1,250 = 18 pounds per inch
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The support.-at station 5, however, 1ls rigld; that 1s,
its spring constant 1s infinite, Therefore, since the
actual stiffness of the support at station 5 exceeds the
required value, the system is in stable equilibrium. In
fact, there is an excess of suppord stiffness and the
structure would be stable even though the gtiffnesses of
some of the intermediate supporte were reduced.

It should be noted that while the assumption of egqual
longths and akxial loads for the links and equal stiffness~
es for the intermediate springe simplified the numerical
work of the example, it d14 not affect the esserntlial char-
acteristics of the computation method, which would be
egqually valld for any arbitrarily choscn values for those
guantities. In the example it was found that the avall-
able spring constant gt each station exceedcd that re-~
quired and the system was thoreforc adjudged stable. Had
the available spring coanstant at any station been less
than that required, the system would have been adjudged
unstable. '

In practical problems the spring constants of the
various supports are usually not known to a high degree
of precision, 'and there may bo 1initial deflections of the
stations. .Therefore, it 1is degirable to provide supports
with spring conetants considerably in exéess of those
theorotically called for. In many problems it would also
save labor and be conservative to assume that Just half
the spring constant at each intermediate support repre-
gsentod tho stiffness avallable to each of the links at
that station. This assumption would preVent the asccumula-
tion of errors due to lack of precision in the assumed
“values for the support spring congtants. S

The chain of links shown in figure 7 is not a common
practical.  structure.. -‘The designer 1is much more likely to
be confronted with %the problem of investigating the sta-
bility of a continuous beam~column. If such a member 1s
considered as & serdies of links with pin Joints at the
supports, the resistance %o biekling due to continuity of
the member is neglected and the application of this
"successive-link method" of analysis gives. conservative
results. It is the bellsf of the wrlters, however, that
the degree of conservatism ig not excessive, and that the
actual effect of continuity is to provide anm oxtra margin
of safety compsrable to. that~required to absorb the possl-
ble effects of initial deflections and lack of precision
in the cstimated .values of the support stiffnesses.
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Whether or not this faet is true can be determined only by
oxporience and further study of the problem._

STABILITY OF MEMBERS OF PIN-JOINTED ThﬁSSEs

In the precedling sections criterions are devcloped
for thoe stabllity of a link with varylng degrees of elastic-
gsupport stiffness. A method is then shown for using these
criterions for investigating the stabllity of a serles of
pin-connected links. This method, however, is based on
"the assumption that the supports are independent and the
deflection of one has no effect on the deflections of the
others, While this assumption is true for some structures,
it ig far from being generally true, and the method re-
quireg modificgtion 1if it 1s to be applied to zany practi-
cal types of structure. The rest of thls report is there-
fore devoted to the development of a procedure by which
the basic method under study can be used to invesgtigate
the stability against rotation of a member of a pln-Jjolnted
truss,

‘A pin-jointed truss, such as that shown in figure 8,
may be btreated as a system of elastically -supported links,
in which egeh link 1s restrained from rotaetion by the ax~
ial loads that would be developed in the truss members,
including the one in gquestion. It differs from the link _
of figure 3 in that the mpovements of its ends are not inde-
pendent but mutually dependent. On this account the cri-
terions developed previously cannot be applied directly,
but related criterions that take into account this mutual
dependcnece arec needed. Such criterions can be developed
for any specific member in terms of two truss properties
that may be ealled the rotational spring constant and the
induced rotational spring constant for the member.

The rotation ofmny truss member with respect to a
line through the truss supports can bPe determined by es-
tablished methods. The use of the method of virtual work
(roference 1, ch, XII) to doctormine the rotation due to a
unlt couplc applied to the member and resisted by a unilt
-couplo composed of forces acting on the supports, rosulte
in the expression

2 -
g -
—— ab - . - - -
Gep = L om : (34)
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whero p,p 1s the axial load producod in a member by the

specified external force system, L +the length of the b
member, A 1its cross-sectional area, and E the modulus

of elasticity of the material. The ratio of the moment of

an imposed couple to the resulting rotation of a member,

which is : -

1
k . = —=. - (35)
ab Tyt

can therefore be computed for any given member. This ratio
is what is here termed the "rotational spring consbtant of
the member. .

When a unit couple is applied to one member, each of
the other members will rotats, and thoge rotations may bo
oxproessced by the relation : _.

= —_— Y 3
“xy z AE (36)
where o i1s the rotation otlény arbitrarily chosen mem- B

Xy .
ber, XY; Pxys the axial load produced in a momber by a
unit couple imposed on momber - XY; and Pgbs 4, E, and
L arc the samc as in equation (34).

-

If the rotation due to the hypothetical unit couplo
applicd to momber 'AB is small, the axial loads produced
by tho actual loading systom on the truss may be assumed
unchanged in magnitude, though slightly changed in direc—
tions, If the actual axial load in any member be P, it
may bo rosolved into two compononts, P cos o parallel to
the direction of the member prior to the imposition of the
unit couple, and P sin o perpendlcular.to that direc-
tion. Since o 1is assumed small, these.comnponents mnay
be assumed equal to P and Pa, respectively, Since
each truss.member would be designed to withstgnd 1ts ax-
ial 10ad P, and since ZP = 0 at .emch point, there is
no degnger of instability resulting from the action of the
parallel components. On the other hand, since the rota-
tions of the varlous members entering a joint will not, in
general, be identical, it cannot be assumed that at each
Joint ZPa = O0; Dbut there will be g finite resultant of
the perpendicular components of the forces actling at each i
Joint. These resultants may be termed the induced loads
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since they are induced by the rotations resulting from ap-
piying the unit couple on member AB. These induced loads
woild ténd to produce additional rotations of the truss
members,- which may be termed the "induced rotations."

The mgznitude of the induced rotation of member AB
nay be obtsgined fron P D

_ 5 PabdPingl I
“’a'b' = T (37)

whers p,y, I, 4, and E are the sare as previously
given and Pina isg the axial force in a menber produced

by the induced loads. From equation (37) the ratio of in-
duced loading to resulting rotation, which may be termed
the "induced spring constant" of a member A3 would be

1

ot’za,b

kP = (3 8)_‘

ab t T

The rotational spring constant of a member may be in- .
terpreted physically as a measuve of the resistance of-
fered by the fruss to the rotation of a member dus to a
unit couple applied to that member., Similarly, the in-
duced rotational spring constant may be interpreted as a.
measurc’ of the resistance offered by the truigs vo rotation
of the momber as a rosult of#the induced 1oads.

Therefore, 1% may be deduced that if kab éXcoeds . o
k ab SO that the resistance to rotation ‘caused by the inw-

duced loads is greater than the resistance %o rotation
caused by the unit couple that would produce those induced
loads, .the .member is in -stable equilibrium., Vice versa,. '~
if kab‘ is less than kab’ indicating that the resist-

ance to rotation caused by the induced lozsds is smaller

than the resistance to rotation caused by the original uznit
couple, the member is in unstabls squilibrius gand the struc-
ture would collapse.

whickh is slmple enough to show clearly and completely the
steps involvod in such an analysis,.and yet is of such de-
sign that by study of this approach it c¢an be seen how the
criterion can bc mapplicd to more complex structures, PFPurely
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for convonicenecé in. saleulation and presentation, all mem-

bers are assuncd-to be of the. same materlal and of the-same v
croga~soctlional arca.’ The oxtdrnal loading assumed con~

sists of a vertical load W applied at -Joint F and tho
nccossary reactions at D and H, but the conditions un-

der any othoer loading-ecould bo treated in- essentially tho

gAamMC Wmannor., : .

By application of .equation (34) the rotation, with re-
spoet to a line through the supports, of member A3 duo
to a unilt couple applied to that member is found to be

Gpp = 9 i39§~rgdians per 1néh—pbﬁnd“

Therefore, the. rotational spring constanb of menber A3, as
defined by equation (35) is- :

AR

kab = BTIEEE 1nch-poun§s per radian

By successive use of equation (36) the associated ro-
tations of the obther members with respect to the line
through the ‘supports can-be conputed. The multiplying of '
each rotation by the load imposed om the member by the ex-
terngl force W, the resolving of the products into hor- :
lzontal and’ vertieal coriponent's, "and the conbining of those ‘
conponernts, produce the induced - logdds shown in figure 9.
Values of 'the rotations and the ‘corresponding induced loads
are listed 1n table I. Tho rotation of menber A3 that
would be produced by the induccd-load ‘syston of .figure 9
~'is -found by application of equation (37) to.be

apt = (9] EBEB W radiﬂnlé-'-p?r._inch—pound

Fron cquation (38) the induced rotational apring constant
is thorcfore o L . -
AzEz ) _' . . K ’ . f '
kab' =BT§§$Z~W inoch-pounds por radlian

If it be assumed that

A =-2.00“squdre inchés' o B - : ,
E = 30,000,000 pounds per square inch
W = 80,000 pounds
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k . = 2% 80,000,000
ab 0.1296

= 463,000,000 inch-potinds per radian

and . :
1 - 4 X 900,000,000,000,000

k. 3 = 137,400,000,000 inch-
a 0.3274 x 80,000

pounds poer radian

Since k ' > kg it may be concluded that member AB is
in stable equilibrium,

TABLE I

TABULATED VALUES OF o AN¥D Pa

Menber AE o AR Pg
AB 0.1298 0.0972¥
-BG —-.0648 -.04886YW
DE -.0230 .0086¥%
EF .0852 -.0319W
FG -,0204 .0073%W
GE -,0418 . LO0L57W
4D . -.0092 - .,0057¢
AT .0094 , 0000
AR . 0435 -.0272W
BEF L0322 .0000
CF -.0065 .0041¥
CcG .0084 .0000
CH -.0279 " -.0175W

‘ 4 positive value. of o indicates that the member ro-
tated in the same direction as the applied unit couple,

with respect to the reference line. e

A negative value of « ipdicates.that the mdmber ro-
tated in a direction opposite to that of the applied unit
couplé with resspect to the reference line.

A negatlve - value of Po 1indicates that they form =
‘clockwise couple on the membeor.

A positive value of Pao indicates that they. form a
counterclockwlise couple on the member. -
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If in this example i1t were desired to determine the
magnltude of the load at which member AB would become
unstable, that could be done by equating the expressions
for .k, and kg;' and solving for W. This would givs

an

AR - ARE®
0.1296 0.3274 W
whence .
0.1296 AE
¥ = __.____._0.5274 = 0,396 AE = 23,750,000 pounds

In this example the critical value of ¥ for member
AB 18 nearly 300 times as great as the asgsumed load of
80,000 pounds, yet that assumed load subjects the member
to an average unit stress of 30,000 pounds per square inch,
If the material were any known variety of steel, member AB
would fail in direct compression long bofore instability
of the member against rotation became an important factor.

In s practical truss, however, the mombers would sel-
dom be of equal cross-gesctional ares, and wlth the design
of figure 8, in particular, slnce the load W imposed at '
P . would produce no axial load in that member, BF would
nornally be nmade nuch lighter then AB. At times 1t mlght
therofore be suspected that BF was so lightly designed
that member AB was in danger of experlencing rotational
instability fallure, and a check by the nethod just out-
lined would be in order.

An alternative method of investigating the stability
of truss members agalnst rotation is described by Timoshenko
(reference .4, art. 28), who credits 1t to von Misges and.
Ratzersdorfer. The sysﬁem of attack Just outlined how-
ever, appears to the writers to be mors easily applied to
the investigation oftrusses of arbitrary proportions and
1oad1ng, particularly 1f the work must be dons by personnel
of only moderate experience.

In the development of thig criterion for the stability
of a truss, 1% is implicitly assumed that elastlic failure
would be the result of the rotation of a sslected membor.,
The critical load thus obtained might not, therefore, be
the minimum critieal load, since there might be a2 smallor
eritical load associated with rotations of some other mem- ¢
ber or group of members, It would be desirable to continue
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the study of this criterion to £ind out if the eritical
load obtained by its use is likely %o be significantly in
excess of the critical load obtained by the method of )
von HMises and Ratzersdorfer that is not subject to this
defoet, It would alsc be desirable to investigate various
possibilitics by which the criterion of this papor, or its
practical application, could be simplified for use in rou-
tine design work,

Guggonhoim Acronaubtics Laboratory,

Stanford University, Calif., March 23, 1942.
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Figs. 1,3,3,4
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